satellite-image-deep-learning
Satellite image deep learning
Uncertainty Quantification for Neural Networks with Pytorch Lightning UQ Box
2
0:00
-25:36

Uncertainty Quantification for Neural Networks with Pytorch Lightning UQ Box

With Nils Lehmann
2

In this episode, I caught up with Nils Lehmann to learn about Uncertainty Quantification for Neural Networks. The conversation begins with a discussion on Bayesian neural networks and their ability to quantify the uncertainty of their predictions. Unlike regular deterministic neural networks, Bayesian neural networks offer a more principled method for providing predictions with a measure of confidence.

Nils then introduces the Pytorch Lightning UQ Box project on GitHub, a tool that enables experimentation with a variety of Uncertainty Quantification (UQ) techniques for neural networks. Model interpretability is a crucial topic, essential for providing transparency to end users of machine learning models. The video of this conversation is also available on YouTube here

Bio: Nils Lehmann is a PhD Student at the Technical University of Munich (TUM), supervised by Jonathan Bamber and Xiaoxiang Zhu, working on uncertainty quantification for sea-level rise. More broadly his interests lie in Bayesian Deep Learning, uncertainty quantification and generative modelling for Earth Observational data. He is also passionate about open-source software contributions and a maintainer of the Torchgeo package.

2 Comments
satellite-image-deep-learning
Satellite image deep learning
Dive into the world of deep learning for satellite images with your host, Robin Cole. Robin meets with experts in the field to discuss their research, products, and careers in the space of satellite image deep learning. Stay up to date on the latest trends and advancements in the industry - whether you’re an expert in the field or just starting to learn about satellite image deep learning, this a podcast for you. Head to https://www.satellite-image-deep-learning.com/ to learn more about this fascinating domain